内生细菌已经进化出复杂的传递系统,使这些生物体能够与宿主的生物学相连接。其中一种系统是胞外可收缩注射系统(eCISs),它是类似注射器的大分子复合体,通过驱动穿过细胞膜的将负载蛋白注入真核细胞。
去年一篇Science报道中,eCIS已被发现能够在小鼠细胞发挥作用,这意味着这些系统可以被利用于治疗性蛋白质传递。然而,eCIS是否能够在人类细胞中发挥作用尚不清楚。
基于这一挑战,麻省理工学院和哈佛大学博德研究所张锋团队,报告了一种蛋白质递送的可编程系统的开发,通过人工智能蛋白设计平台AlphaFold,重新设计基于细菌的分子注射装置,以靶向特定细胞并递送蛋白质。相关成果以“Programmable protein delivery with a bacterial contractile injection system”发表于最新一期Nature。
Photorhabdus细菌分泌出一种胞外结构,Photorhabdus毒力盒(PVCs),能够将各种蛋白质注射到目标细胞中杀死昆虫。这种胞外结构含有一个空心“注射器”,能将蛋白质装入该结构的空心管中。尾部纤维对目标细胞具有特异性,一旦纤维接触到目标细胞,它们就会与细胞表面的受体结合,鞘就会收缩。这个动作将针管物理性地推过目标膜,将蛋白质直接送入细胞。
重新设计细菌的可收缩注射系统
利用人工智能程序阿尔法折叠AlphaFold预测蛋白质结构,研究团队确定了PVC尾部纤维的一个区域,对细胞具有特异性。尤其是尾部纤维末端的预测球状部分,负责靶向结合。根据这一特性,研究人员重新设计“注射器”,对尾部纤维的结构进行修改,可以使其定位不同的细胞,并递送蛋白质。
AlphaFold 引导的尾纤维工程
研究人员替换了尾部纤维的这一部分,通过将截断的尾部纤维的序列,与能够将PVC与细胞表面的不同受体特异性结合的蛋白质结构序列,进行基因融合,将PVCs重新靶向特定的小鼠和人类细胞。实验结果表明,PVCs在人体细胞中表现出高效的递送活性和高度特异性,其效率接近100%。
研究人员首先使用实验室培养的细胞进行蛋白质递送测试。将各种蛋白质装入注射器,包括 Cas9 和可用于杀死癌细胞的毒素,并将它们输送到人体细胞。
实验针对表达EGFR的癌细胞注射毒素,结果表明,几乎100%的EGFR阳性细胞死亡,与此同时不影响没有EGFR的细胞,结合光镜直接观察方法,成功实现和检测特定的蛋白质靶向传递。研究人员还成功地装载了基因编辑系统CRISPR的大型Cas9蛋白成分,当被递送给带有引导RNA的细胞时,检测到了特定的基因编辑。
PVC 介导的蛋白质递送具有高度特异性
不仅在体外培养细胞中引入蛋白质,研究人员还探索了该细菌“注射器”是否能在活体动物中发挥作用。纯化的PVC颗粒被直接注射到小鼠大脑的海马区,结果观察到递送蛋白的荧光信号只出现在注射区域周围,重要的是,并没有引发局部免疫反应,而且在大脑注射7天后,再也无法检测到PVCs。
活体小鼠大脑中的蛋白质递送
这套细菌“注射器”,借鉴自然界的技术,加上人工智能的磨练,将为蛋白质递送系统提供巨大的发展潜力。
Nature同期刊连发两篇相关新闻,专家评论:“注射器的故事让人不禁联想到张锋研究团队开发CRISPR-Cas9的方式,即利用自然界中许多微生物抵御病毒的方式,开发成一种基因组编辑技术。与CRISPR-Cas9研究类似,细菌注射器的发展和进化,可能会对生物医学产生变革性的影响。”
【作者简介】
张锋,分子生物学家,美国艺术与科学院院士,美国国家科学院院士,美国国家发明家科学院院士,美国国家医学院院士,麻省理工学院教授,麦戈文脑科学研究所研究员,博德研究所核心研究员。
于2004年获得哈佛大学化学与物理学学士学位;2009年获得斯坦福大学化学及生物工程博士学位;2011年任职于麻省理工学院,在麦戈文脑科学研究所(McGovern Institute)大脑与认知科学部门和博德研究所(Broad Institute)从事科研工作。2017年晋升为麻省理工学院终身教授(35岁);2018年4月当选为美国艺术与科学院院士(36岁),5月当选为美国国家科学院院士;2020年12月当选为美国国家发明家科学院院士;2021年10月当选为美国国家医学院院士。
--纤维素推荐--
--测试服务--
https://.nature.com/articles/s41586-023-05870-7
https://.nature.com/articles/d41586-023-00847-y
https://.nature.com/articles/d41586-023-00922-4
来源:高分子科学前沿
声明:仅代表作者个人观点,作者水平有限,如有不科学之处,请在下方留言指正!