【解答】(1)解:四边形ABDE是平行四边形,理由如下:∵AB=AC,D是BC中点,F是AC中点,∴DF∥AB,∵AB=AC,D是BC中点,∴∠BAD=∠CAD,AD⊥DC,∵AN是△ABC的外角∠MAC的角平分线,∴∠MAE=∠CAE,∴∠NAD=90°,∴AE∥BD,∴四边形ABDE是平行四边形;(2)解:CE∥AD,CE=AD;理由如下:∵AN是△ABC外角∠CAM的平分线,∴∠MAE=12∠MAC,∵∠MAC=∠B+∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠MAE=∠B,∴AN∥BC,∵AB=AC,点D为BC中点,∴AD⊥BC,∵CE⊥AN,∴AD∥CE,∴四边形ADCE为平行四边形(有两组对边分别平行的四边形是平行四边形),∵CE⊥AN,∴∠AEC=90°,∴四边形ADCE为矩形(有一个角是直角的平行四边形是矩形)∴CE∥AD,CE=AD.