【答案】(1)连接AD,由于点D是的中点,根据圆周角定理知∠BAD=∠CAD,由垂径定理知,OD⊥BC根据垂直于同一条直线的两条直线平行知AE∥OD,由两直线平行,内错角相等知∠DAE=∠ODA,由等边对等角知∠DAO=∠ODA,∴∠BAD-∠DAH=∠CAD-∠DAO,∴∠FAH=∠CAO;(2)过点O作OM⊥AC于M,由垂径定理知,AC=2AM,由于CF⊥AB∠BAC=60°∴AC=AF÷cos60°=2AF∴AF=AM在△AFH与△AMO中有∠FAH=∠CAO AF=AM∠AFH=∠AMO,∴△AFH≌△AMO,∴AH=OA=OD,∴AH平行且等于OD,∴四边形AHDO为菱形.证明:(1)连接AD,∵点D是的中点,∴∠BAD=∠CAD,OD⊥BC,∵AE⊥BC,∴AE∥OD,∴∠DAH=∠ODA,∵OA=OD,∴∠DAO=∠ODA,∴∠BAD-∠DAH=∠CAD-∠DAO,∴∠FAH=∠CAO;(2)过点O作OM⊥AC于M,∴AC=2AM,∵CF⊥AB,∠BAC=60°,∴AC=2AF,∴AF=AM,在△AFH与△AMO中,∵∠FAH=∠CAO,AF=AM,∠AFH=∠AMO,∴△AFH≌△AMO,∴AH=OA,∵OA=OD,∴AH平行且等于OD.∴四边形AHDO是平行四边形(一组对边平行且相等的四边形是平行四边形),又∵OA=OD,∴平行四边形AHDO是菱形(临边相等的平行四边形是菱形)