您的位置:首页>聚焦>汽车 >内容

如图点\(P\)为正方形\(ABCD\)内一点且\(∠APB=90^{\circ}\)延长\(AP\)交直线\(CD\)于\(M\)分别延长\(CP\)、\(DP\)交直线\(AB\)于点\(E\)、\(F\)(\((1)\)求证:\( \dfrac {AE}{CM}= \dfrac {AF}{DM}\); \((2)\)求证:\(EF^{2}=AF⋅BE\); \((3)\)若\(E\)为\(AB\)的中点直接写出\(\tan ∠APD\)的值.","title_text":"如图点\(P\)为正方形\

2022-07-12 11:13:11来源:
导读 想必现在有很多小伙伴对于如图,点 (P )为正方形 (ABCD )内一点,且 (∠APB=90^{ circ} ),延长 (AP )交直线 (CD )于 (M ),分别延长 (CP

想必现在有很多小伙伴对于如图,点\(P\)为正方形\(ABCD\)内一点,且\(∠APB=90^{\circ}\),延长\(AP\)交直线\(CD\)于\(M\),分别延长\(CP\)、\(DP\)交直线\(AB\)于点\(E\)、\(F\) \((1)\)求证:\( \dfrac {AE}{CM}= \dfrac {AF}{DM}\); \((2)\)求证:\(EF^{2}=AF⋅BE\); \((3)\)若\(E\)为\(AB\)的中点,直接写出\(\tan ∠APD\)的值.","title_text":"如图,点\(P\)为正方形\(ABCD\)内一点,且\(∠APB=90^{\circ}\),延长\(AP\)交直线\(CD\)于\(M\),分别延长\(CP\)、\(DP\)交直线\(AB\)于点\(E\)、\(F\) \((1)\)求证:\( \dfrac {AE}{CM}= \dfrac {AF}{DM}\); \((2)\)求证:\(EF^{2}=AF⋅BE\); \((3)\)若\(E\)为\(AB\)的中点,直接写出\(\tan ∠APD\)的值.方面的知识都比较想要了解,那么今天小好小编就为大家收集了一些关于如图,点\(P\)为正方形\(ABCD\)内一点,且\(∠APB=90^{\circ}\),延长\(AP\)交直线\(CD\)于\(M\),分别延长\(CP\)、\(DP\)交直线\(AB\)于点\(E\)、\(F\) \((1)\)求证:\( \dfrac {AE}{CM}= \dfrac {AF}{DM}\); \((2)\)求证:\(EF^{2}=AF⋅BE\); \((3)\)若\(E\)为\(AB\)的中点,直接写出\(\tan ∠APD\)的值.","title_text":"如图,点\(P\)为正方形\(ABCD\)内一点,且\(∠APB=90^{\circ}\),延长\(AP\)交直线\(CD\)于\(M\),分别延长\(CP\)、\(DP\)交直线\(AB\)于点\(E\)、\(F\) \((1)\)求证:\( \dfrac {AE}{CM}= \dfrac {AF}{DM}\); \((2)\)求证:\(EF^{2}=AF⋅BE\); \((3)\)若\(E\)为\(AB\)的中点,直接写出\(\tan ∠APD\)的值.方面的知识分享给大家,希望大家会喜欢哦。

((1))在正方形(ABCD)中, (AF/!/DM), (∴triangle AEP)∽(triangle MCP)。

(triangle AFP)∽(triangle MDP) (∴ dfrac {AE}{CM}= dfrac {AP}{PM}),( dfrac {AP}{PM}= dfrac {AF}{PM}), (∴ dfrac {AE}{CM}= dfrac {AP}{PM}= dfrac {AF}{DM})。

(∴ dfrac {AE}{CM}= dfrac {AF}{DM}), ((2))延长(BP)交(CD)于点(N), (∵EF/!/CD)。

(∴triangle EFP)∽(triangle CDP), (∴ dfrac {EF}{CD}= dfrac {PE}{PC}), (∵BE/!/CN)。

(∴triangle EBP)∽(triangle CNP), (∴ dfrac {BE}{CN}= dfrac {PE}{PC}), (∴ dfrac {EF}{CD}= dfrac {BE}{CN})。

即( dfrac {EF}{BE}= dfrac {CD}{CN}), 同理可证:( dfrac {AF}{DM}= dfrac {PF}{PD}),( dfrac {EF}{CD}= dfrac {PF}{PD})。

(∴ dfrac {AF}{DM}= dfrac {EF}{CD}), 即( dfrac {AF}{EF}= dfrac {DM}{CD}), (∵∠APB=∠BPM=BCM=90^{circ})。

(∴∠NBC=∠AMD), (∴triangle BNC)∽(triangle MAD), (∴ dfrac {CN}{BC}= dfrac {AD}{DM})(∵AD=BC=CD)。

(∴ dfrac {CN}{CD}= dfrac {CD}{DM}), (∴ dfrac {EF}{BE}= dfrac {AF}{EF}), (∴EF^{2}=AF⋅BE); ((3))连接(AN)由((2))可知。

(∠PNM=∠DAM), (∴A)、(P)、(N)、(D)四点共圆, (∴∠APD=∠AND)。

设(BF=x),(AB=2), 由((2))可知:(EF^{2}=AF⋅BE)。

(∴(1+x)^{2}=(2+x)), (∴x=- dfrac {1}{2}± dfrac { sqrt {5}}{2}), (∵x > 0)。

(∴x= dfrac { sqrt {5}-1}{2}), (∵ dfrac {BF}{DN}= dfrac {BP}{PN}= dfrac {EB}{CN}), (∴ dfrac {BF}{DN}= dfrac {EB}{CD-DN})。

(∴DN=3- sqrt {5}), (∴)在(Rttriangle ADN)中, (tan ∠AND= dfrac {AD}{DN}= dfrac {2}{3- sqrt {5}}= dfrac {3+ sqrt {5}}{2})。

(∴tan ∠APD=tan ∠AND= dfrac {3+ sqrt {3}}{2}). 。

本文到此结束,希望对大家有所帮助。

免责声明:本文由用户上传,如有侵权请联系删除!

猜你喜欢

最新文章