【解答】解:(1)∵PM∥BD,PN∥AC,∴△AMP∽△ABD,得PMBD=APAD①同理可得△DPN∽△DAC,PNAC=PDAD②①+②得:得PMBD+PNAC=PDAD+APAD=(AP+PD)AD=1即:PMBD+PNAC=1;(2)∵PM∥BD,PN∥AC,AC⊥BD,∴∠MPN为直角,∵AC=BD=12,PN=x,PMBD+PNAC=1,∴PM=12-x,∴△PMN的面积y=12×x(12-x)=-12x2+6x;(3)由(2)知:y=-12(x-6)2+18,当x=6时,ymax=18,此时点P为线段AD的中点.